Chapter 1

Definitions and Fundamental Concepts

1.1 Definitions

Conceptually, a graph is formed by vertices and edges connecting the vertices.

Example.

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, formed by pairs of vertices. E is a multiset, in other words, its elements can occur more than once so that every element has a multiplicity. Often, we label the vertices with letters (for example: a, b, c, \ldots or v_{1}, v_{2}, \ldots) or numbers $1,2, \ldots$ Throughout this lecture material, we will label the elements of V in this way.

Example. (Continuing from the previous example) We label the vertices as follows:

We have $V=\left\{v_{1}, \ldots, v_{5}\right\}$ for the vertices and $E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{5}\right),\left(v_{5}, v_{5}\right),\left(v_{5}, v_{4}\right),\left(v_{5}, v_{4}\right)\right\}$ for the edges.

Similarly, we often label the edges with letters (for example: a, b, c, \ldots or e_{1}, e_{2}, \ldots) or numbers $1,2, \ldots$ for simplicity.

Remark. The two edges (u, v) and (v, u) are the same. In other words, the pair is not ordered.
Example. (Continuing from the previous example) We label the edges as follows:

So $E=\left\{e_{1}, \ldots, e_{5}\right\}$.
We have the following terminologies:

1. The two vertices u and v are end vertices of the edge (u, v).
2. Edges that have the same end vertices are parallel.
3. An edge of the form (v, v) is a loop.
4. A graph is simple if it has no parallel edges or loops.
5. A graph with no edges (i.e. E is empty) is empty.
6. A graph with no vertices (i.e. V and E are empty) is a null graph.
7. A graph with only one vertex is trivial.
8. Edges are adjacent if they share a common end vertex.
9. Two vertices u and v are adjacent if they are connected by an edge, in other words, (u, v) is an edge.
10. The degree of the vertex v, written as $d(v)$, is the number of edges with v as an end vertex. By convention, we count a loop twice and parallel edges contribute separately.
11. A pendant vertex is a vertex whose degree is 1.
12. An edge that has a pendant vertex as an end vertex is a pendant edge.
13. An isolated vertex is a vertex whose degree is 0 .

Example. (Continuing from the previous example)

- v_{4} and v_{5} are end vertices of e_{5}.
- e_{4} and e_{5} are parallel.
- e_{3} is a loop.
- The graph is not simple.
- e_{1} and e_{2} are adjacent.
- v_{1} and v_{2} are adjacent.
- The degree of v_{1} is 1 so it is a pendant vertex.
- e_{1} is a pendant edge.
- The degree of v_{5} is 5 .
- The degree of v_{4} is 2 .
- The degree of v_{3} is 0 so it is an isolated vertex.

In the future, we will label graphs with letters, for example:

$$
G=(V, E) .
$$

The minimum degree of the vertices in a graph G is denoted $\delta(G)(=0$ if there is an isolated vertex in G). Similarly, we write $\Delta(G)$ as the maximum degree of vertices in G.

Example. (Continuing from the previous example) $\delta(G)=0$ and $\Delta(G)=5$.
Remark. In this course, we only consider finite graphs, i.e. V and E are finite sets.
Since every edge has two end vertices, we get
Theorem 1.1. The graph $G=(V, E)$, where $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$, satisfies

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=2 m
$$

Corollary. Every graph has an even number of vertices of odd degree.
Proof. If the vertices v_{1}, \ldots, v_{k} have odd degrees and the vertices v_{k+1}, \ldots, v_{n} have even degrees, then (Theorem 1.1)

$$
d\left(v_{1}\right)+\cdots+d\left(v_{k}\right)=2 m-d\left(v_{k+1}\right)-\cdots-d\left(v_{n}\right)
$$

is even. Therefore, k is even.
Example. (Continuing from the previous example) Now the sum of the degrees is $1+2+0+$ $2+5=10=2 \cdot 5$. There are two vertices of odd degree, namely v_{1} and v_{5}.

A simple graph that contains every possible edge between all the vertices is called a complete graph. A complete graph with n vertices is denoted as K_{n}. The first four complete graphs are given as examples:

The graph $G_{1}=\left(V_{1}, E_{1}\right)$ is a subgraph of $G_{2}=\left(V_{2}, E_{2}\right)$ if

1. $V_{1} \subseteq V_{2}$ and
2. Every edge of G_{1} is also an edge of G_{2}.

Example. We have the graph

and some of its subgraphs are

and

The subgraph of $G=(V, E)$ induced by the edge set $E_{1} \subseteq E$ is:

$$
G_{1}=\left(V_{1}, E_{1}\right)=_{\text {def. }}\left\langle E_{1}\right\rangle,
$$

where V_{1} consists of every end vertex of the edges in E_{1}.
Example. (Continuing from above) From the original graph G, the edges e_{2}, e_{3} and e_{5} induce the subgraph

The subgraph of $G=(V, E)$ induced by the vertex set $V_{1} \subseteq V$ is:

$$
G_{1}=\left(V_{1}, E_{1}\right)=_{\text {def. }}\left\langle V_{1}\right\rangle,
$$

where E_{1} consists of every edge between the vertices in V_{1}.
Example. (Continuing from the previous example) From the original graph G, the vertices v_{1}, v_{3} and v_{5} induce the subgraph

A complete subgraph of G is called a clique of G.

1.2 Walks, Trails, Paths, Circuits, Connectivity, Components

Remark. There are many different variations of the following terminologies. We will adhere to the definitions given here.

A walk in the graph $G=(V, E)$ is a finite sequence of the form

$$
v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}, v_{i_{k}}
$$

which consists of alternating vertices and edges of G. The walk starts at a vertex. Vertices $v_{i_{t-1}}$ and $v_{i_{t}}$ are end vertices of $e_{j_{t}}(t=1, \ldots, k) . v_{i_{0}}$ is the initial vertex and $v_{i_{k}}$ is the terminal vertex. k is the length of the walk. A zero length walk is just a single vertex $v_{i_{0}}$. It is allowed to visit a vertex or go through an edge more than once. A walk is open if $v_{i_{0}} \neq v_{i_{k}}$. Otherwise it is closed.

Example. In the graph

the walk

$$
v_{2}, e_{7}, v_{5}, e_{8}, v_{1}, e_{8}, v_{5}, e_{6}, v_{4}, e_{5}, v_{4}, e_{5}, v_{4}
$$

is open. On the other hand, the walk

$$
v_{4}, e_{5}, v_{4}, e_{3}, v_{3}, e_{2}, v_{2}, e_{7}, v_{5}, e_{6}, v_{4}
$$

is closed.
A walk is a trail if any edge is traversed at most once. Then, the number of times that the vertex pair u, v can appear as consecutive vertices in a trail is at most the number of parallel edges connecting u and v.

Example. (Continuing from the previous example) The walk in the graph

$$
v_{1}, e_{8}, v_{5}, e_{9}, v_{1}, e_{1}, v_{2}, e_{7}, v_{5}, e_{6}, v_{4}, e_{5}, v_{4}, e_{4}, v_{4}
$$

is a trail.
A trail is a path if any vertex is visited at most once except possibly the initial and terminal vertices when they are the same. A closed path is a circuit. For simplicity, we will assume in the future that a circuit is not empty, i.e. its length ≥ 1. We identify the paths and circuits with the subgraphs induced by their edges.

Example. (Continuing from the previous example) The walk

$$
v_{2}, e_{7}, v_{5}, e_{6}, v_{4}, e_{3}, v_{3}
$$

is a path and the walk

$$
v_{2}, e_{7}, v_{5}, e_{6}, v_{4}, e_{3}, v_{3}, e_{2}, v_{2}
$$

is a circuit.
The walk starting at u and ending at v is called an $u-v$ walk. u and v are connected if there is a $u-v$ walk in the graph (then there is also a $u-v$ path!). If u and v are connected and v and w are connected, then u and w are also connected, i.e. if there is a $u-v$ walk and a $v-w$ walk, then there is also a $u-w$ walk. A graph is connected if all the vertices are connected to each other. (A trivial graph is connected by convention.)
Example. The graph

is not connected.
The subgraph G_{1} (not a null graph) of the graph G is a component of G if

1. G_{1} is connected and
2. Either G_{1} is trivial (one single isolated vertex of G) or G_{1} is not trivial and G_{1} is the subgraph induced by those edges of G that have one end vertex in G_{1}.
Different components of the same graph do not have any common vertices because of the following theorem.
Theorem 1.2. If the graph G has a vertex v that is connected to a vertex of the component G_{1} of G, then v is also a vertex of G_{1}.

Proof. If v is connected to vertex v^{\prime} of G_{1}, then there is a walk in G

$$
v=v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, \ldots, v_{i_{k-1}}, e_{j_{k}}, v_{i_{k}}=v^{\prime}
$$

Since v^{\prime} is a vertex of G_{1}, then (condition \#2 above) $e_{j_{k}}$ is an edge of G_{1} and $v_{i_{k-1}}$ is a vertex of G_{1}. We continue this process and see that v is a vertex of G_{1}.

Example.

The components of G are G_{1}, G_{2}, G_{3} and G_{4}.

Theorem 1.3. Every vertex of G belongs to exactly one component of G. Similarly, every edge of G belongs to exactly one component of G.

Proof. We choose a vertex v in G. We do the following as many times as possible starting with $V_{1}=\{v\}$:
$(*)$ If v^{\prime} is a vertex of G such that $v^{\prime} \notin V_{1}$ and v^{\prime} is connected to some vertex of V_{1}, then $V_{1} \leftarrow V_{1} \cup\left\{v^{\prime}\right\}$.

Since there is a finite number of vertices in G, the process stops eventually. The last V_{1} induces a subgraph G_{1} of G that is the component of G containing $v . G_{1}$ is connected because its vertices are connected to v so they are also connected to each other. Condition \#2 holds because we can not repeat $(*)$. By Theorem 1.2, v does not belong to any other component.

The edges of the graph are incident to the end vertices of the components.
Theorem 1.3 divides a graph into distinct components. The proof of the theorem gives an algorithm to do that. We have to repeat what we did in the proof as long as we have free vertices that do not belong to any component. Every isolated vertex forms its own component. A connected graph has only one component, namely, itself.

A graph G with n vertices, m edges and k components has the rank

$$
\rho(G)=n-k .
$$

The nullity of the graph is

$$
\mu(G)=m-n+k .
$$

We see that $\rho(G) \geq 0$ and $\rho(G)+\mu(G)=m$. In addition, $\mu(G) \geq 0$ because
Theorem 1.4. $\rho(G) \leq m$
Proof. We will use the second principle of induction (strong induction) for m.
Induction Basis: $m=0$. The components are trivial and $n=k$.
Induction Hypothesis: The theorem is true for $m<p .(p \geq 1)$
Induction Statement: The theorem is true for $m=p$.
Induction Statement Proof: We choose a component G_{1} of G which has at least one edge. We label that edge e and the end vertices u and v. We also label G_{2} as the subgraph of G and G_{1}, obtained by removing the edge e from G_{1} (but not the vertices u and v). We label G^{\prime} as the graph obtained by removing the edge e from G (but not the vertices u and v) and let k^{\prime} be the number of components of G^{\prime}. We have two cases:

1. G_{2} is connected. Then, $k^{\prime}=k$. We use the Induction Hypothesis on G^{\prime} :

$$
n-k=n-k^{\prime}=\rho\left(G^{\prime}\right) \leq m-1<m
$$

2. G_{2} is not connected. Then there is only one path between u and v :

$$
u, e, v
$$

and no other path. Thus, there are two components in G_{2} and $k^{\prime}=k+1$. We use the Induction Hypothesis on G^{\prime} :

$$
\rho\left(G^{\prime}\right)=n-k^{\prime}=n-k-1 \leq m-1 .
$$

Hence $n-k \leq m$.
These kind of combinatorial results have many consequences. For example:
Theorem 1.5. If G is a connected graph and $k \geq 2$ is the maximum path length, then any two paths in G with length k share at least one common vertex.

Proof. We only consider the case where the paths are not circuits (Other cases can be proven in a similar way.). Consider two paths of G with length k :

$$
v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}, v_{i_{k}} \quad\left(\text { path } p_{1}\right)
$$

and

$$
v_{i_{0}^{\prime}}, e_{j_{1}^{\prime}}, v_{i_{1}^{\prime}}, e_{j_{2}^{\prime}}, \ldots, e_{j_{k}^{\prime}}, v_{i_{k}^{\prime}} \quad \text { (path } p_{2} \text {). }
$$

Let us consider the counter hypothesis: The paths p_{1} and p_{2} do not share a common vertex. Since G is connected, there exists an $v_{i_{0}}-v_{i_{k}^{\prime}}$ path. We then find the last vertex on this path which is also on p_{1} (at least $v_{i_{0}}$ is on p_{1}) and we label that vertex $v_{i_{t}}$. We find the first vertex of the $v_{i_{t}}-v_{i_{k}^{\prime}}$ path which is also on p_{2} (at least $v_{i_{k}^{\prime}}$ is on p_{2}) and we label that vertex $v_{i_{s}^{\prime}}$. So we get a $v_{i_{t}}-v_{i_{s}^{\prime}}$ path

$$
v_{i t}, e_{j_{1}^{\prime \prime}}, \ldots, e_{j_{\ell}^{\prime \prime}}, v_{i_{s}^{\prime}} .
$$

The situation is as follows:

$$
\begin{gathered}
v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, \ldots, v_{i_{t}}, e_{j_{t+1}}, \ldots, e_{j_{k}}, v_{i_{k}} \\
e_{j_{1}^{\prime \prime}} \\
\vdots \\
e_{j_{\ell^{\prime \prime}}} \\
v_{i_{0}^{\prime}}, e_{j_{1}^{\prime}}, v_{i_{1}^{\prime}}, \ldots, v_{i_{s}^{\prime}}, e_{j_{s+1}^{\prime}}, \ldots, e_{j_{k}^{\prime}}, v_{i_{k}^{\prime}}
\end{gathered}
$$

From here we get two paths: $v_{i_{0}}-v_{i_{k}^{\prime}}$ path and $v_{i_{0}^{\prime}}-v_{i_{k}}$ path. The two cases are:

- $t \geq s$: Now the length of the $v_{i_{0}}-v_{i_{k}^{\prime}}$ path is $\geq k+1 . \sqrt{ }^{1}$
- $t<s$: Now the length of the $v_{i_{0}^{\prime}}-v_{i_{k}}$ path is $\geq k+1$. $\sqrt{ }$

A graph is circuitless if it does not have any circuit in it.
Theorem 1.6. A graph is circuitless exactly when there are no loops and there is at most one path between any two given vertices.

Proof. First let us assume G is circuitless. Then, there are no loops in G. Let us assume the counter hypothesis: There are two different paths between distinct vertices u and v in G :

$$
u=v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}, v_{i_{k}}=v \quad\left(\text { path } p_{1}\right)
$$

and

$$
u=v_{i_{0}^{\prime}}, e_{j_{1}^{\prime}}, v_{i_{1}^{\prime}}, e_{j_{2}^{\prime}}, \ldots, e_{j_{\ell}^{\prime}}, v_{i_{\ell}^{\prime}}=v \quad\left(\text { path } p_{2}\right)
$$

(here we have $i_{0}=i_{0}^{\prime}$ and $i_{k}=i_{\ell}^{\prime}$), where $k \geq \ell$. We choose the smallest index t such that

$$
v_{i_{t}} \neq v_{i_{t}^{\prime}} .
$$

There is such a t because otherwise

[^0]1. $k>\ell$ and $v_{i_{k}}=v=v_{i_{\ell}^{\prime}}=v_{i_{\ell}}(\sqrt{ })$ or
2. $k=\ell$ and $v_{i_{0}}=v_{i_{0}^{\prime}}, \ldots, v_{i_{\ell}}=v_{i_{\ell}^{\prime}}$. Then, there would be two parallel edges between two consecutive vertices in the path. That would imply the existence of a circuit between two vertices in G. $\sqrt{ }$

We choose the smallest index s such that $s \geq t$ and $v_{i_{s}}$ is in the path p_{2} (at least $v_{i_{k}}$ is in p_{2}). We choose an index r such that $r \geq t$ and $v_{i_{r}^{\prime}}=v_{i_{s}}$ (it exists because p_{1} is a path). Then,

$$
v_{i_{t-1}}, e_{j_{t}}, \ldots, e_{j_{s}}, v_{i_{s}}\left(=v_{i_{r}^{\prime}}\right), e_{j_{r}^{\prime}}, \ldots, e_{j_{t}^{\prime}}, v_{i_{t-1}^{\prime}}\left(=v_{i_{t-1}}\right)
$$

is a circuit. $\sqrt{ }$ (Verify the case $t=s=r$.)
Let us prove the reverse implication. If the graph does not have any loops and no two distinct vertices have two different paths between them, then there is no circuit. For example, if

$$
v_{i_{0}}, e_{j_{1}}, v_{i_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}, v_{i_{k}}=v_{i_{0}}
$$

is a circuit, then either $k=1$ and $e_{j_{1}}$ is a loop $(\sqrt{ })$, or $k \geq 2$ and the two vertices $v_{i_{0}}$ and $v_{i_{1}}$ are connected by two distinct paths

$$
v_{i_{0}}, e_{j_{1}}, v_{i_{1}} \quad \text { and } \quad v_{i_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}, v_{i_{k}}=v_{i_{0}} \quad(\sqrt{ })
$$

1.3 Graph Operations

The complement of the simple graph $G=(V, E)$ is the simple graph $\bar{G}=(V, \bar{E})$, where the edges in \bar{E} are exactly the edges not in G.

Example.

Example. The complement of the complete graph K_{n} is the empty graph with n vertices.
Obviously, $\overline{\bar{G}}=G$. If the graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are simple and $V^{\prime} \subseteq V$, then the difference graph is $G-G^{\prime}=\left(V, E^{\prime \prime}\right)$, where $E^{\prime \prime}$ contains those edges from G that are not in G^{\prime} (simple graph).

Example.

Here are some binary operations between two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ $\left(V_{2}, E_{2}\right)$:

- The union is $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ (simple graph).
- The intersection is $G_{1} \cap G_{2}=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$ (simple graph).
- The ring sum $G_{1} \oplus G_{2}$ is the subgraph of $G_{1} \cup G_{2}$ induced by the edge set $E_{1} \oplus E_{2}$ (simple graph). Note! The set operation \oplus is the symmetric difference, i.e.

$$
E_{1} \oplus E_{2}=\left(E_{1}-E_{2}\right) \cup\left(E_{2}-E_{1}\right) .
$$

Since the ring sum is a subgraph induced by an edge set, there are no isolated vertices. All three operations are commutative and associative.

Example. For the graphs

[^0]: ${ }^{1}$ From now on, the symbol $\sqrt{ }$ means contradiction. If we get a contradiction by proceeding from the assumptions, the hypothesis must be wrong.

