Chapter 1

Definitions and Fundamental Concepts

1.1 Definitions

Conceptuallyagraphis formed byverticesandedgesconnecting the vertices.

Example.

Formally, a graph is a pair of setd’, E), whereV is theset of verticeand £ is the set of
edgesformed by pairs of vertices is amultiset in other words, its elements can occur more
than once so that every element hasuw@tiplicity. Often, we label the vertices with letters (for
examplea,b,c,... orvy,vo,...)0ornumberd, 2, ... Throughout this lecture material, we will
label the elements df in this way.

Example. (Continuing from the previous example) We label the vestaefollows:

V1
V2 .V3 V4
We havd/ = {Ul, R ,115} for the vertices andr = {(Ul, 1)2), (1)2, 1)5), (U5, U5), (U5, U4), (U5, 114)}

for the edges.

Similarly, we often label the edges with letters (for exaenpl, b,c,... Oreq,es,...) Or num-
bersl, 2, ... for simplicity.
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Remark. The two edgegu, v) and(v, u) are the same. In other words, the pair is motlered

Example. (Continuing from the previous example) We label the edgésliasvs:

SoFE = {ey,...,e5}.
We have the following terminologies:
1. The two vertices, andv areend vertice®f the edg€u, v).
2. Edges that have the same end verticeparallel.
An edge of the forngv, v) is aloop.
A graph issimpleif it has no parallel edges or loops.
A graph with no edges (i.€ is empty) isempty
A graph with no vertices (i.8/ and E are empty) is aull graph
A graph with only one vertex isivial .

Edges aradjacentf they share a common end vertex.

© © N o 0 &~ W

Two vertices: andv areadjacentf they are connected by an edge, in other wotdsy)
is an edge.

10. Thedegreeof the vertex, written asd(v), is the number of edges withas an end vertex.
By convention, we count a loop twice and parallel edges dmuttr separately.

11. Apendant verteis a vertex whose degreelis
12. An edge that has a pendant vertex as an end vertgxasagant edge
13. Anisolated vertexs a vertex whose degree(is

Example. (Continuing from the previous example)

e v, anduvs are end vertices of;.

ey andes are parallel.

es is a loop.

The graph is not simple.

e1 ande, are adjacent.
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e v; andwv, are adjacent.

e The degree of; is 1 so it is a pendant vertex.

e1 IS a pendant edge.

e The degree of; is 5.

e The degree of, is 2.

e The degree ofi; is 0 so it is an isolated vertex.

In the future, we will label graphs with letters, for example
G=(V,E).

Theminimum degreef the vertices in a grapfi is denoted (&) (= 0 if there is an isolated
vertex inG). Similarly, we writeA(G) as themaximum degreef vertices inG.

Example. (Continuing from the previous examplg)7) = 0 and A(G) = 5.
Remark. In this course, we only considénite graphs, i.e) and £ are finite sets.
Since every edge has two end vertices, we get

Theorem 1.1.The graphG = (V, E), whereV = {vy,...,v,} andE = {ey, ..., e, }, satisfies

Z d(v;) = 2m.

Corollary. Every graph has an even number of vertices of odd degree.

Proof. If the verticesvy, ..., v, have odd degrees and the vertiegs,, . . ., v, have even de-
grees, then (Theorem 1.1)

d(vy) + -+ d(vg) =2m — d(vgyr) — -+ — d(vy)
is even. Therefore; is even. O

Example. (Continuing from the previous example) Now the sum of theedegsl + 2 + 0 +
2+ 5 =10=2-5. There are two vertices of odd degree, nameglgndvs.

A simple graph that contains every possible edge betweémealertices is called@omplete
graph A complete graph with vertices is denoted as,,. The first four complete graphs are
given as examples:

K K
K1 K2 A ! @
[ ) o——0

The graphiz; = (V4, F1) is asubgraphof Gy = (V4, Es) if
1. V; C Vs and

2. Every edge of7, is also an edge afs.
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Example. We have the graph

and some of its subgraphs are

Vo
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and

Thesubgraph of = (V, E) induced by the edge sé} C F is:
G = (Vi, E1) =det. (EN),
whereV; consists of every end vertex of the edge#in

Example. (Continuing from above) From the original gragh, the edges,, e3 ande; induce
the subgraph

Thesubgraph of7 = (V, E) induced by the vertex sét C V is:
G = (V1, E1) =det. (V1),
whereF; consists of every edge between the verticelg; in

Example. (Continuing from the previous example) From the originaghn G, the vertices,
v3 andwvs induce the subgraph

A complete subgraph df is called acliqueof G.
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1.2 Walks, Trails, Paths, Circuits, Connectivity, Componats

Remark. There are many different variations of the following terotogies. We will adhere to
the definitions given here.

A walkin the graphz = (V, E) is a finite sequence of the form
vio,ejl,vil,ep, ey ejk,,vik,

which consists of alternating vertices and edge§ ol he walk starts at a vertex. Vertices ,
andv;, are end vertices of;, (¢t = 1,...,k). v;, is theinitial vertexandv;, is theterminal
vertex k is thelengthof the walk. A zero length walk is just a single vertex. It is allowed to
visit a vertex or go through an edge more than once. A watlpenif v;, # v;, . Otherwise it
is closed

Example. In the graph

the walk

Vg, €7, Us, €8, U1, €8, Us, €6, U4, €5, V4, €5, V4

is open. On the other hand, the walk
Vg4, €5, U4, €3, V3, €2, U2, €7, U5, €6, U4
is closed.

A walk is atrail if any edge is traversed at most once. Then, the number oftiha the
vertex pairu, v can appear as consecutive vertices in a trail is at most theauof parallel
edges connecting andv.

Example. (Continuing from the previous example) The walk in the graph
U1, €8, Us, €9, U1, €1, V2, €7, Us, €6, U4, €5, V4, €4, Uy
is a trail.

A trail is apathif any vertex is visited at most once except possibly theah#nd terminal
vertices when they are the same. A closed pathdscait. For simplicity, we will assume in
the future that a circuit is not empty, i.e. its lengthl. We identify the paths and circuits with
the subgraphs induced by their edges.
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Example. (Continuing from the previous example) The walk
V2, €7, Us, €6, U4, €3, U3

is a path and the walk
Uy, €7, U5, €6, U4, €3, U3, €2, U2
iS a circuit.

The walk starting at: and ending at is called anu— walk « andv areconnectedf there
is au—v walk in the graph (then there is alsaaw path!). If u andv are connected andandw
are connected, thenandw are also connected, i.e. if there is-a walk and av—w walk, then
there is also a—w walk. A graph isconnectedf all the vertices are connected to each other.
(A trivial graph is connected by convention.)

Example. The graph

IS not connected.
The subgrapld’; (not a null graph) of the grapfy is acomponenbof G if
1. GG, is connected and

2. Either G, is trivial (one single isolated vertex @f) or (G, is not trivial andG, is the
subgraph induced by those edgeg-athat have one end vertex (#;.

Different components of the same graph do not have any convextices because of the fol-
lowing theorem.

Theorem 1.2.1f the graphG has a vertex that is connected to a vertex of the compor@nt
of G, thenw is also a vertex of;.
Proof. If v is connected to vertex of G, then there is a walk i67

/

UV = Vig; €51y Uiy e ooy Ujy_q5 €5, V4, = U .

Sincev’ is a vertex ofG, then (condition #2 above), is an edge ofy; andv;, , is a vertex
of GG;. We continue this process and see thet a vertex ofz;. O

Example.

The components @f are GG, G5, G5 andGy.



CHAPTER 1. DEFINITIONS AND FUNDAMENTAL CONCEPTS 8

Theorem 1.3. Every vertex ofs belongs to exactly one componentafSimilarly, every edge
of GG belongs to exactly one componentaf

Proof. We choose a vertexin GG. We do the following as many times as possible starting with
Vi ={v}:

(x) If o' is a vertex ofG such that’ ¢ V; andv’ is connected to some vertex f, then
Vi< Viu{v'}.

Since there is a finite number of verticesinthe process stops eventually. The l&sinduces a
subgraphz; of G that is the component @f containingu. GG; is connected because its vertices
are connected to so they are also connected to each other. Condition #2 heltsise we can
not repeatx). By Theorem 1.2y does not belong to any other component.

The edges of the graph are incident to the end vertices ofcimpaonents. 0J

Theorem 1.3 divides a graph into distinct components. Thefpof the theorem gives an
algorithm to do that. We have to repeat what we did in the pamfong as we have free
vertices that do not belong to any component. Every isola¢etdx forms its own component.
A connected graph has only one component, namely, itself.

A graphG with n vertices,n edges and components has thank

p(G)=n—k.

Thenullity of the graph is
w(G)=m—n+k.

We see thap(G) > 0 andp(G) + p(G) = m. In addition,u(G) > 0 because
Theorem 1.4.p(G) <m

Proof. We will use the second principle of induction (strong indaoicj for m.

Induction Basism = 0. The components are trivial and= k.

Induction HypothesisThe theorem is true fon < p. (p > 1)

Induction StatemeniThe theorem is true fatn = p.

Induction Statement ProofVe choose a compone@t, of G which has at least one edge.
We label that edge and the end vertices andv. We also label7; as the subgraph @ and
G, obtained by removing the edgdrom G, (but not the vertices andv). We labelG’ as the
graph obtained by removing the edgé&om G (but not the vertices andv) and letk’ be the
number of components ¢f’. We have two cases:

1. G4 is connected. Thert/ = k. We use the Induction Hypothesis 6t
n—k=n—kK=pG)<m-1<m.
2. G is not connected. Then there is only one path betweandv:
U, e,V

and no other path. Thus, there are two componentsiandk’ = k£ + 1. We use the
Induction Hypothesis ot’:

p(GY=n—-kK=n—-k—1<m-1
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Hencen — k < m. U
These kind of combinatorial results have many consequefRoeexample:

Theorem 1.5.1f G is a connected graph and > 2 is the maximum path length, then any two
paths inG with length% share at least one common vertex.

Proof. We only consider the case where the paths are not circuitee(@ases can be proven in
a similar way.). Consider two paths 6fwith length#:

Vigs €515 Vigy €jgy - - -5 €55 Uiy, (pathpl)

and

Uit s €515 Uy

Iz ejéa R ejlga Uigﬁ (pathPQ)

Let us consider the counter hypothesihe pathsp; andp, do not share a common vertex.
Since( is connected, there exists ap—v;; path. We then find the last vertex on this path
which is also orp, (at least;, is onp;) and we label that vertex,. We find the first vertex of
thewv;,—v;; path which is also op, (at leastv;; is onp,) and we label that vertex, . So we get

av;,—v; path

Vi s 6]‘1/, e ejé/, Vit .
The situation is as follows:
Vigy €415 Vigy -+ +5Viys €jppgy - o5 €y Uiy,
eji/
ejé/
U%,@ji,via, Ce ,Uz‘g,ej;_H, .. '7€j;;7vi;€

From here we get two paths;,—v;; path and; —v;, path. The two cases are:
e ¢ > s: Now the length of the;—v;;, pathis>k+ 1. /*

e t < s: Now the length of the; —v;, pathis> £ + 1. v 0

A graph iscircuitlessif it does not have any circuit in it.

Theorem 1.6. A graph is circuitless exactly when there are no loops andetieat most one
path between any two given vertices.

Proof. First let us assumé&' is circuitless. Then, there are no loopsGn Let us assume the
counter hypothesisThere are two different paths between distinct verticesidv in G

U = Vg, €j,, Vi, €y - - - €5, Vi, = U (Pathpy)

and
U = Ui67 ejia Uilla ejéa R 6]’27 Uiz =v (pathPQ)

(here we have, = i, andi;, = 7;), wherek > ¢. We choose the smallest indesuch that
Vi, # Vi

There is such abecause otherwise

'From now on, the symbal/ means contradiction. If we get a contradiction by procegfliom the assump-
tions, the hypothesis must be wrong.
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1. k> tandv;, =v =wv; =v;, (/) or

2. k=/(tandv;, = vy,...,v;, = Vi Then, there would be two parallel edges between two
consecutive vertices in the path. That would imply the exiseé of a circuit between two
vertices inG. 4/

We choose the smallest indesuch that > ¢ andv;, is in the pattp, (at least;, is inps). We

choose an index such that > ¢ andv;, = v,, (it exists becausg, is a path). Then,
Vig_15C€jgy -5 €y ’UZ‘S(: ’Uilr), €j;, ey ejt/, ,Uié,l(: Ul't—l)

is a circuit. 4/ (Verify the case = s = r.)

Let us prove the reverse implication. If the graph does ne¢ laay loops and no two distinct
vertices have two different paths between them, then tisame tircuit. For example, if

vio,ejl,vil,eﬁ, .. '7€jk7vik = Vs

is a circuit, then eithek = 1 ande;, is aloop /), or k > 2 and the two vertices,, andv;,
are connected by two distinct paths

Vigs €415 Viy and Uity €joy « - + 5 €y Vi, = Uy (\/) [l

1.3 Graph Operations

The complemenbf the simple grapit; = (V, E) is the simple grapli: = (V, E), where the
edges inF are exactly the edges not i

Example.

Vo V3
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Example. The complement of the complete graphis the empty graph with vertices.

Obviously,i = G. If the graphsz = (V, E) andG’ = (V’, E’) are simple and” C V/, then
the differencegraph isG — G’ = (V, E”), whereE” contains those edges frofthat are not
in G’ (simple graph).

Example.
)

Here are some binary operations between two simple gréphs- (Vi, E;) and Gy, =
(‘/27 E2)

e Theunionis G, U Gy = (V1 U Vs, By U Ey) (simple graph).
e Theintersections G; N Gy = (V1 N Vs, By N Ey) (simple graph).

e Thering sumG; @ G, is the subgraph af'; UG, induced by the edge sét @ Fs (simple
graph).Note! The set operatiom is thesymmetric difference.e.

E\® Ey = (Ey — Ey) U (B, — Ey).

Since the ring sum is a subgraph induced by an edge set, tieene &olated vertices. All three
operations are commutative and associative.

Example. For the graphs

Vi Vo Vi
& oV
Gy s G,
€
V Vv V
3 e, 4 3
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