
Chapter 1

Definitions and Fundamental Concepts

1.1 Definitions

Conceptually, agraph is formed byverticesandedgesconnecting the vertices.

Example.

Formally, a graph is a pair of sets(V,E), whereV is theset of verticesandE is theset of
edges, formed by pairs of vertices.E is amultiset, in other words, its elements can occur more
than once so that every element has amultiplicity. Often, we label the vertices with letters (for
example:a, b, c, . . . or v1, v2, . . . ) or numbers1, 2, . . . Throughout this lecture material, we will
label the elements ofV in this way.

Example. (Continuing from the previous example) We label the vertices as follows:

v2 v3

v1

v4

v5

We haveV = {v1, . . . , v5} for the vertices andE = {(v1, v2), (v2, v5), (v5, v5), (v5, v4), (v5, v4)}
for the edges.

Similarly, we often label the edges with letters (for example: a, b, c, . . . or e1, e2, . . . ) or num-
bers1, 2, . . . for simplicity.
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Remark. The two edges(u, v) and(v, u) are the same. In other words, the pair is notordered.

Example. (Continuing from the previous example) We label the edges asfollows:

v2 v3

v1

v4

v5
e1

e2

e3

e4 e5

SoE = {e1, . . . , e5}.

We have the following terminologies:

1. The two verticesu andv areend verticesof the edge(u, v).

2. Edges that have the same end vertices areparallel.

3. An edge of the form(v, v) is a loop.

4. A graph issimpleif it has no parallel edges or loops.

5. A graph with no edges (i.e.E is empty) isempty.

6. A graph with no vertices (i.e.V andE are empty) is anull graph.

7. A graph with only one vertex istrivial .

8. Edges areadjacentif they share a common end vertex.

9. Two verticesu andv areadjacentif they are connected by an edge, in other words,(u, v)
is an edge.

10. Thedegreeof the vertexv, written asd(v), is the number of edges withv as an end vertex.
By convention, we count a loop twice and parallel edges contribute separately.

11. A pendant vertexis a vertex whose degree is1.

12. An edge that has a pendant vertex as an end vertex is apendant edge.

13. An isolated vertexis a vertex whose degree is0.

Example. (Continuing from the previous example)

• v4 andv5 are end vertices ofe5.

• e4 ande5 are parallel.

• e3 is a loop.

• The graph is not simple.

• e1 ande2 are adjacent.
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• v1 andv2 are adjacent.

• The degree ofv1 is 1 so it is a pendant vertex.

• e1 is a pendant edge.

• The degree ofv5 is 5.

• The degree ofv4 is 2.

• The degree ofv3 is 0 so it is an isolated vertex.

In the future, we will label graphs with letters, for example:

G = (V,E).

Theminimum degreeof the vertices in a graphG is denotedδ(G) (= 0 if there is an isolated
vertex inG). Similarly, we write∆(G) as themaximum degreeof vertices inG.

Example. (Continuing from the previous example)δ(G) = 0 and∆(G) = 5.

Remark. In this course, we only considerfinite graphs, i.e.V andE are finite sets.

Since every edge has two end vertices, we get

Theorem 1.1.The graphG = (V,E), whereV = {v1, . . . , vn} andE = {e1, . . . , em}, satisfies

n
∑

i=1

d(vi) = 2m.

Corollary. Every graph has an even number of vertices of odd degree.

Proof. If the verticesv1, . . . , vk have odd degrees and the verticesvk+1, . . . , vn have even de-
grees, then (Theorem 1.1)

d(v1) + · · ·+ d(vk) = 2m− d(vk+1)− · · · − d(vn)

is even. Therefore,k is even.

Example. (Continuing from the previous example) Now the sum of the degrees is1 + 2 + 0 +
2 + 5 = 10 = 2 · 5. There are two vertices of odd degree, namelyv1 andv5.

A simple graph that contains every possible edge between allthe vertices is called acomplete
graph. A complete graph withn vertices is denoted asKn. The first four complete graphs are
given as examples:

K1 K2
K3 K4

The graphG1 = (V1, E1) is asubgraphof G2 = (V2, E2) if

1. V1 ⊆ V2 and

2. Every edge ofG1 is also an edge ofG2.
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Example. We have the graph

G2:

e1

v1

v2

e2

e3 v3

e4

v4

e5

v5

e6

and some of its subgraphs are

G1:

e1

v1

v2

G1:

e1

v1

v2

e2

v3

e4

v4

e5

v5

e6

G1:

v1

v2

v3

e5

v5

e6
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and

G1:
v5

e6

Thesubgraph ofG = (V,E) induced by the edge setE1 ⊆ E is:

G1 = (V1, E1) =def. 〈E1〉,

whereV1 consists of every end vertex of the edges inE1.

Example. (Continuing from above) From the original graphG, the edgese2, e3 ande5 induce
the subgraph

〈e2,e3,e5〉:

v1

v2

e2

e3 v3

e5

v5

Thesubgraph ofG = (V,E) induced by the vertex setV1 ⊆ V is:

G1 = (V1, E1) =def. 〈V1〉,

whereE1 consists of every edge between the vertices inV1.

Example. (Continuing from the previous example) From the original graphG, the verticesv1,
v3 andv5 induce the subgraph

v1 e3 v3

e5

v5

e6

〈v1,v3,v5〉:

A complete subgraph ofG is called acliqueof G.
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1.2 Walks, Trails, Paths, Circuits, Connectivity, Components

Remark. There are many different variations of the following terminologies. We will adhere to
the definitions given here.

A walk in the graphG = (V,E) is a finite sequence of the form

vi0 , ej1 , vi1, ej2, . . . , ejk , vik ,

which consists of alternating vertices and edges ofG. The walk starts at a vertex. Verticesvit−1

andvit are end vertices ofejt (t = 1, . . . , k). vi0 is the initial vertex andvik is the terminal
vertex. k is thelengthof the walk. A zero length walk is just a single vertexvi0 . It is allowed to
visit a vertex or go through an edge more than once. A walk isopenif vi0 6= vik . Otherwise it
is closed.

Example. In the graph

v6

G: v1

e10
e9

e8

e1

v2

e7

e2

v5 e6

e5

v4

v3

e3

e4

the walk
v2, e7, v5, e8, v1, e8, v5, e6, v4, e5, v4, e5, v4

is open. On the other hand, the walk

v4, e5, v4, e3, v3, e2, v2, e7, v5, e6, v4

is closed.

A walk is a trail if any edge is traversed at most once. Then, the number of times that the
vertex pairu, v can appear as consecutive vertices in a trail is at most the number of parallel
edges connectingu andv.

Example. (Continuing from the previous example) The walk in the graph

v1, e8, v5, e9, v1, e1, v2, e7, v5, e6, v4, e5, v4, e4, v4

is a trail.

A trail is a path if any vertex is visited at most once except possibly the initial and terminal
vertices when they are the same. A closed path is acircuit. For simplicity, we will assume in
the future that a circuit is not empty, i.e. its length≥ 1. We identify the paths and circuits with
the subgraphs induced by their edges.
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Example. (Continuing from the previous example) The walk

v2, e7, v5, e6, v4, e3, v3

is a path and the walk
v2, e7, v5, e6, v4, e3, v3, e2, v2

is a circuit.

The walk starting atu and ending atv is called anu–v walk. u andv areconnectedif there
is au–v walk in the graph (then there is also au–v path!). Ifu andv are connected andv andw
are connected, thenu andw are also connected, i.e. if there is au–v walk and av–w walk, then
there is also au–w walk. A graph isconnectedif all the vertices are connected to each other.
(A trivial graph is connected by convention.)

Example. The graph

is not connected.

The subgraphG1 (not a null graph) of the graphG is acomponentof G if

1. G1 is connected and

2. EitherG1 is trivial (one single isolated vertex ofG) or G1 is not trivial andG1 is the
subgraph induced by those edges ofG that have one end vertex inG1.

Different components of the same graph do not have any commonvertices because of the fol-
lowing theorem.

Theorem 1.2. If the graphG has a vertexv that is connected to a vertex of the componentG1

ofG, thenv is also a vertex ofG1.

Proof. If v is connected to vertexv′ of G1, then there is a walk inG

v = vi0 , ej1, vi1 , . . . , vik−1
, ejk , vik = v′.

Sincev′ is a vertex ofG1, then (condition #2 above)ejk is an edge ofG1 andvik−1
is a vertex

of G1. We continue this process and see thatv is a vertex ofG1.

Example.

G:

v1

v3

v2

e1 e2
v4 e3

e5

v6

e4

v5

e6

v7

e7

v8G1 G2 G3 G4

The components ofG areG1, G2, G3 andG4.
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Theorem 1.3.Every vertex ofG belongs to exactly one component ofG. Similarly, every edge
ofG belongs to exactly one component ofG.

Proof. We choose a vertexv in G. We do the following as many times as possible starting with
V1 = {v}:

(∗) If v′ is a vertex ofG such thatv′ /∈ V1 andv′ is connected to some vertex ofV1, then
V1 ← V1 ∪ {v

′}.

Since there is a finite number of vertices inG, the process stops eventually. The lastV1 induces a
subgraphG1 of G that is the component ofG containingv. G1 is connected because its vertices
are connected tov so they are also connected to each other. Condition #2 holds because we can
not repeat(∗). By Theorem 1.2,v does not belong to any other component.

The edges of the graph are incident to the end vertices of the components.

Theorem 1.3 divides a graph into distinct components. The proof of the theorem gives an
algorithm to do that. We have to repeat what we did in the proofas long as we have free
vertices that do not belong to any component. Every isolatedvertex forms its own component.
A connected graph has only one component, namely, itself.

A graphG with n vertices,m edges andk components has therank

ρ(G) = n− k.

Thenullity of the graph is
µ(G) = m− n+ k.

We see thatρ(G) ≥ 0 andρ(G) + µ(G) = m. In addition,µ(G) ≥ 0 because

Theorem 1.4.ρ(G) ≤ m

Proof. We will use the second principle of induction (strong induction) form.
Induction Basis: m = 0. The components are trivial andn = k.
Induction Hypothesis: The theorem is true form < p. (p ≥ 1)
Induction Statement: The theorem is true form = p.
Induction Statement Proof: We choose a componentG1 of G which has at least one edge.

We label that edgee and the end verticesu andv. We also labelG2 as the subgraph ofG and
G1, obtained by removing the edgee fromG1 (but not the verticesu andv). We labelG′ as the
graph obtained by removing the edgee from G (but not the verticesu andv) and letk′ be the
number of components ofG′. We have two cases:

1. G2 is connected. Then,k′ = k. We use the Induction Hypothesis onG′:

n− k = n− k′ = ρ(G′) ≤ m− 1 < m.

2. G2 is not connected. Then there is only one path betweenu andv:

u, e, v

and no other path. Thus, there are two components inG2 andk′ = k + 1. We use the
Induction Hypothesis onG′:

ρ(G′) = n− k′ = n− k − 1 ≤ m− 1.
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Hencen− k ≤ m.

These kind of combinatorial results have many consequences. For example:

Theorem 1.5. If G is a connected graph andk ≥ 2 is the maximum path length, then any two
paths inG with lengthk share at least one common vertex.

Proof. We only consider the case where the paths are not circuits (Other cases can be proven in
a similar way.). Consider two paths ofG with lengthk:

vi0, ej1 , vi1, ej2, . . . , ejk , vik (pathp1)

and
vi′

0
, ej′

1
, vi′

1
, ej′

2
, . . . , ej′

k
, vi′

k
(pathp2).

Let us consider the counter hypothesis: The pathsp1 andp2 do not share a common vertex.
SinceG is connected, there exists anvi0–vi′k path. We then find the last vertex on this path
which is also onp1 (at leastvi0 is onp1) and we label that vertexvit . We find the first vertex of
thevit–vi′k path which is also onp2 (at leastvi′

k
is onp2) and we label that vertexvi′s . So we get

avit–vi′s path
vit , ej′′1 , . . . , ej′′ℓ , vi′s.

The situation is as follows:

vi0 , ej1, vi1 , . . . ,vit , ejt+1
, . . . , ejk , vik

ej′′
1

...

ej′′
ℓ

vi′
0
, ej′

1
, vi′

1
, . . . ,vi′s, ej′s+1

, . . . , ej′
k
, vi′

k

From here we get two paths:vi0–vi′k path andvi′
0
–vik path. The two cases are:

• t ≥ s: Now the length of thevi0–vi′k path is≥ k + 1.
√ 1

• t < s: Now the length of thevi′
0
–vik path is≥ k + 1.

√

A graph iscircuitlessif it does not have any circuit in it.

Theorem 1.6. A graph is circuitless exactly when there are no loops and there is at most one
path between any two given vertices.

Proof. First let us assumeG is circuitless. Then, there are no loops inG. Let us assume the
counter hypothesis: There are two different paths between distinct verticesu andv in G:

u = vi0 , ej1, vi1 , ej2, . . . , ejk , vik = v (pathp1)

and
u = vi′

0
, ej′

1
, vi′

1
, ej′

2
, . . . , ej′

ℓ
, vi′

ℓ
= v (pathp2)

(here we havei0 = i′0 andik = i′ℓ), wherek ≥ ℓ. We choose the smallest indext such that

vit 6= vi′
t
.

There is such at because otherwise
1From now on, the symbol

√

means contradiction. If we get a contradiction by proceeding from the assump-
tions, the hypothesis must be wrong.
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1. k > ℓ andvik = v = vi′
ℓ
= viℓ (

√

) or

2. k = ℓ andvi0 = vi′
0
, . . . , viℓ = vi′

ℓ
. Then, there would be two parallel edges between two

consecutive vertices in the path. That would imply the existence of a circuit between two
vertices inG.

√

u
v

v vit–1 is

p1

p2

We choose the smallest indexs such thats ≥ t andvis is in the pathp2 (at leastvik is in p2). We
choose an indexr such thatr ≥ t andvi′r = vis (it exists becausep1 is a path). Then,

vit−1
, ejt, . . . , ejs, vis(= vi′r), ej′r , . . . , ej′t, vi′t−1

(= vit−1
)

is a circuit.
√

(Verify the caset = s = r.)
Let us prove the reverse implication. If the graph does not have any loops and no two distinct

vertices have two different paths between them, then there is no circuit. For example, if

vi0 , ej1 , vi1, ej2, . . . , ejk , vik = vi0

is a circuit, then eitherk = 1 andej1 is a loop (
√

), or k ≥ 2 and the two verticesvi0 andvi1
are connected by two distinct paths

vi0 , ej1, vi1 and vi1 , ej2, . . . , ejk , vik = vi0 (
√

).

1.3 Graph Operations

Thecomplementof the simple graphG = (V,E) is the simple graphG = (V,E), where the
edges inE are exactly the edges not inG.

Example.

v2

v1

v3

v4

v5
G:

v2

v1

v3

v4

v5
G:
_
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Example. The complement of the complete graphKn is the empty graph withn vertices.

Obviously,G = G. If the graphsG = (V,E) andG′ = (V ′, E ′) are simple andV ′ ⊆ V , then
thedifferencegraph isG − G′ = (V,E ′′), whereE ′′ contains those edges fromG that are not
in G′ (simple graph).

Example.

G: G':

G – G':

Here are some binary operations between two simple graphsG1 = (V1, E1) andG2 =
(V2, E2):

• Theunion isG1 ∪G2 = (V1 ∪ V2, E1 ∪ E2) (simple graph).

• The intersectionisG1 ∩G2 = (V1 ∩ V2, E1 ∩ E2) (simple graph).

• Thering sumG1⊕G2 is the subgraph ofG1∪G2 induced by the edge setE1⊕E2 (simple
graph).Note! The set operation⊕ is thesymmetric difference, i.e.

E1 ⊕E2 = (E1 −E2) ∪ (E2 − E1).

Since the ring sum is a subgraph induced by an edge set, there are no isolated vertices. All three
operations are commutative and associative.

Example. For the graphs

G1: G2:

v1 v2

v5

v3 v4

v1

v3

v6

v7

e1

e2
e3 e5

e4

e1

e7

e6
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